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Abstract

Fuel efficiency standards are a widely used tool to reduce vehicle emissions, though
their welfare implications depend on how much consumers value future fuel savings
when they make initial vehicle purchases. This paper is the first to measure the effect
of the 2014 U.S. fuel efficiency standards for heavy-duty trucks on consumer welfare,
manufacturer profits, and environmental damages. To do so, I estimate a model of
demand and supply in the heavy-duty vehicle market. The demand estimates provide
empirical evidence that buyers substantially undervalue future fuel savings, likely due
to both split incentive problems and incomplete information about vehicle performance.
Then, I simulate the manufacturer and buyer responses to the standards and find that
internalized welfare costs exceed the environmental benefits. However, because of the
considerable undervaluation in the commercial vehicle market and the magnitude of
fuel savings associated with the policy, the fuel savings and environmental benefits of
the 2014 standard exceed the direct costs to consumers and manufacturers.

∗Yale University, School of the Environment (email: stephanie.weber@yale.edu). I thank my
advisors Ken Gillingham, Steve Berry, and Matt Kotchen for their support and invaluable feed-
back throughout this project. Thanks are also due to Paige Weber, Ethan Addicott, Jaehee Song,
Jonathan Hawkins-Pierot, Matt Gordon, Katherine Wagner, and many others in the Yale ENRE
group, as well as participants at the Yale ENRE seminar, LSE Environment Week, the CU En-
vironmental and Resource Economics Workshop, the AERE Summer Meeting, and OSWEET. I
gratefully acknowledge financial support from the NBER Pre-Doctoral Fellowship in Energy Eco-
nomics and the Yale Institute for Biospheric Studies.

https://stephaniemweber.github.io/truck_stds/truck_draft.pdf


1 Introduction

Heavy-duty trucks, the subset of trucks with the highest weight capacities, are only 1% of

vehicles on the road, but they contribute nearly 30% of on-road greenhouse gas emissions

(Tong et al. 2021). While policies have been in place to reduce passenger vehicle fuel us-

age since the 1970s, policies targeting truck emissions have lagged behind: the first engine

standards for trucks were put in place in the late 2000s and fuel economy standards were

introduced a few years later. However, as in the passenger vehicle setting, there is a debate

about the effectiveness and efficiency of imposing fuel economy standards for new vehicle

purchases rather than directly imposing a Pigouvian tax on diesel. This debate hinges on

how well consumers trade off future fuel savings from more efficient vehicles with up-front

costs.

Consumer failures to purchase energy efficient products with positive net present values,

dubbed the “energy efficiency gap” (Jaffe & Stavins 1994, Gillingham & Palmer 2014), have

been documented in a range of settings, from air conditioners (Hausman 1979) to lightbulbs

(Allcott & Taubinsky 2015) to passenger cars (Allcott & Wozny 2014, Gillingham et al. 2021),

although some evidence suggests there may not be failures in the context of vehicles (Busse

et al. 2013, Sallee et al. 2016). This undervaluation of future energy cost savings is used to

rationalize federal standards or mandates, because even in the presence of a Pigouvian tax,

consumers may choose inefficiently energy-intensive products.

This paper asks whether there is indeed evidence of undervaluation and if so, what are the

welfare consequences of this undervaluation for recent fuel economy standards. In the heavy-

duty truck sector, unlike the market for passenger vehicles, buyers are firms and may be less

susceptible to behavioral biases than individual consumers. Even so, EPA and NHTSA

motivate recent fuel economy standards for heavy-duty trucks in part by citing future fuel

savings that, they argue, buyers undervalue (EPA & NHTSA 2011a).

To measure the valuation of future fuel savings and estimate the costs and benefits of

the fuel efficiency policy, I estimate a model of demand and supply in the heavy-duty truck

market. On the demand side, buyers choose trucks based on their industry and their expected

vehicle usage patterns. In making their decision, consumers trade off price and other vehicle

attributes including fuel efficiency (and corresponding future fuel savings), which allows an

estimate of willingness to pay for future fuel savings. On the supply side, profit maximizing

manufacturers choose vehicle prices and technology in light of consumer preferences. When

the policy is imposed, manufacturers can comply in two ways: they can adjust prices so

that consumers buy more fuel efficient models, a practice called “mix shifting,” or they can

adopt technology that improves vehicle fuel efficiency. A major challenge in analyzing the
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truck market is data availability and particularly, data on model-specific fuel efficiency. I

compile data on empirical fuel usage that has not previously been used in academic research

and combine this with other data on additional truck characteristics in order to estimate

demand and supply parameters and policy effects.

I estimate a discrete choice model of truck demand, in which buyers’ utility depends on

their own characteristics as well as vehicle attributes, including fuel efficiency. Using vari-

ation in fuel efficiencies induced by the policy, I find that truck buyers undervalue future

fuel savings. Buyers of combination tractors (i.e., tractors to which trailers can be attached)

are willing to spend $1200 for fuel efficiency improvements worth almost $5800 over a vehi-

cle’s 30-year lifetime, or, put differently, they only value approximately 21% of discounted

future fuel savings, a number slightly smaller than previous estimates of approximately 30%

(Adenbaum et al. 2019). I investigate several mechanisms that may explain this substan-

tial undervaluation and find suggestive evidence that this reflects split incentives due to the

ability of truck owners to pass fuel costs on to the firms whose goods they transport. Using

historical survey evidence, I find that firms that are more able to pass on fuel costs report

lower fuel efficiencies, conditional on other truck and usage characteristics. It may also be

due to incomplete information about vehicle fuel efficiency, because comprehensive efficiency

data by vehicle model is surprisingly difficult to find.

With the demand results and EPA’s estimates of the costs of fuel efficiency-improving

technology, I simulate manufacturer decision making in response to the policy. To do so, I

first estimate the optimal pre-policy technology adoption level. Then, I derive manufacturer

decisions relating to optimal technology adoption and price changes under the policy. Ul-

timately, the (internalized) policy costs to truck buyers are larger than the direct costs to

manufacturers, but there is considerable variation in the burden imposed on different kinds

of buyers. Buyers more inclined to buy vocational vehicles, which are less affected by the

policy, see smaller price changes, while buyers with higher truck usage also benefit more from

cost savings. However, these welfare costs to buyers, and the financial costs to manufactur-

ers, are dwarfed by the fuel savings and, to a lesser extent, the environmental benefits of

those fuel savings. Because of the magnitude of undervaluation, a diesel tax commensurate

with the social cost of carbon would induce only limited fuel savings from shifting purchase

behavior, though the overall fuel savings from reducing vehicle usage on the intensive margin

are quite large.

This paper exists at the intersection of several literatures. First, it contributes to a

long literature on the energy efficiency gap (reviewed in Jaffe & Stavins (1994), Allcott &

Greenstone (2012), Gillingham et al. (2009), Gillingham & Palmer (2014), Gerarden et al.

(2017)), documenting undervaluation of future fuel savings in the truck setting. The most
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related paper to this one, Adenbaum et al. (2019), examines undervaluation of future fuel

savings among truck buyers using older data covering a subset of used vehicles and a hedonic

approach. The present paper estimates fuel savings undervaluation in the market for new

trucks via a discrete choice demand framework and also finds substantial undervaluation,

but incorporates these results into a full model of supply and demand to estimate the welfare

implications of fuel efficiency policy.

Second, this paper adds to a surprisingly small economics literature on the trucking in-

dustry, a sector that is both economically important due to its central role in transporting

goods and environmentally important due to its relatively large contributions to greenhouse

gases and local air pollutants. Wollmann (2018) develops a model of truck manufacturer

decisions with endogenous product attributes in order to assess the implications of recent

bailouts on the sector. This project builds upon features of Wollmann’s model, but incor-

porates fuel efficiency standards, which were not in place during the period he examines,

as well as additional vehicle characteristics relevant to the policy and to prospective truck

buyers, such as the presence of a sleeper compartment. Rather than endogenizing product

entry, I endogenize the relevant vehicle attribute for my setting: fuel intensity. Other pa-

pers in this literature examine decisions made by truck owners, including the relationship

between market structure and adoption of technology affecting truck performance and ef-

ficiency (Hubbard 2000, 2001, Baker & Hubbard 2003, 2004, Vernon & Meier 2012) and

responses to changes in fuel costs. Leard et al. (2016) estimate the rebound effect among

trucks in order to calculate the expected savings from truck fuel efficiency standards. Cohen

& Roth (2016) consider the effect of fuel costs on another margin, dispatch decisions, finding

that increases in fuel cost lead freight truck owners to reallocate load to fewer but heavier

shipments. These papers address margins of response to fuel efficiency standards outside of

the main purview of this paper, which focuses on production and demand.

Finally, this paper builds upon research studying closely related regulations for light-

duty vehicles, called Corporate Average Fuel Economy (CAFE) Standards in the US, and

extends it to a new setting. Goldberg (1998) considered how manufacturers responded to

the standards by shifting production between foreign and domestic manufacturing locations.

Others instead focused on longer-term adjustments in vehicle technology (Kleit 2004, Austin

& Dinan 2005, Shiau et al. 2009), some with an eye toward distributional consequences and

used vehicle markets (Bento et al. 2009, Jacobsen 2013). In light of a shift toward attribute-

based regulation in the light-duty vehicle standards, Ito & Sallee (2018) consider how the

design of the policy affects outcomes. In the context of European standards, Reynaert

(2021) considers the role of gaming as a potential manufacturer response, though there is no

evidence of gaming in the heavy-duty truck markets. Another strand of the literature focuses
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on the extent to which fuel economy improvements were attained via technological progress

versus tradeoffs along the technological frontier (Knittel 2011, Klier & Linn 2012, 2014).1

This paper contributes to the CAFE literature by being the first paper to systematically

analyze the heavy-duty truck fuel economy standards2, which are a complement to CAFE.

This paper is organized as follows. Section 2 provides background on truck attributes,

the heavy-duty truck fuel efficiency standards, available data, and market structure. Section

3 outlines the model, and section 4 provides detail on the estimation approach. Model results

are presented in section 5, and section 6 contains the counterfactual simulations, including

a welfare analysis of the policy. Section 7 concludes.

2 Background

2.1 Product Characteristics

Before examining the truck efficiency standards, this section briefly discusses truck charac-

teristics, which are necessary to understand both how the fuel efficiency policy is set up and

modeling decisions. Heavy-duty trucks are characterized by a limited set of features: gross

vehicle weight rating (GVWR), vehicle type (i.e., whether it is a combination tractor, in

which the vehicle pulls a detachable trailer, or a straight truck, in which the cargo-carrying

component is permanently attached to the vehicle), cab type, axles, and fuel efficiency.

GVWR, the amount of weight the vehicle can carry (including the weight of the vehicle

itself), takes a range of values; the Department of Transportation categorizes vehicles into

classes 1 through 8 based on their GVWR (see table A.1.1 and figure A.2.1 in the appendix

for more detail), and the light- vs. medium- vs. heavy-duty designation is determined by

these classes. Heavy-duty vehicles fall into classes 7 (between 26,001 and 33,000 lbs) and 8

(>33,000 lbs). The weight rating affects the uses of a vehicle (i.e., a truck intended to tow

heavy machinery needs to be rated for loads greater than the weight of the machinery) and,

in general, price is increasing in GVWR.

The cab, the portion of the vehicle that encloses the driver, any passengers, and po-

tentially a sleeping area, is also important to potential buyers. Cab length affects comfort,

safety, and ease of navigation. Shorter cabs, particular cab-over-engine designs, place the

seating area directly over the engine and front axle and allow improved visibility but reduced

1This approach may be less relevant here, because evidence from the trucking sector suggests that the
ability to substitute vehicle attributes like horsepower for fuel efficiency is weaker in heavy-duty vehicles
compared to those under the purview of CAFE (He 2017).

2Excluding the EPA’s Regulatory Impact Analysis (EPA & NHTSA 2011a), which does not allow flex-
ibility in truck manufacturer or buyer decisions, and also does not map fuel savings and costs results to
welfare.
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safety. Longer cabs provide greater comfort and safety for the driver. Cabs also differ in roof

height, which affects the height of trailer that can most efficiently be attached as well as the

ability of the driver to stand up comfortably in the cab. Finally, some class 8 cabs feature

a sleeper compartment, in which drivers can spend the night. Sleeper cabs are important

for long-haul trucks that will be used for multi-day transport, but as they involve additional

amenities, sleepers tend to be more expensive than non-sleeper alternatives.

As in cars, axles determine the configuration of wheels and, in the case of drive axles

connected to the engine, transmit torque to the wheels. All axles also carry the weight of the

attached trailer. As the number of drive axles increase, trucks are able to maintain better

traction on poorly maintained or slippery roads, but efficiency tends to decrease. The same

make and model can be sold with a number of different axle configurations. Historically,

configurations with more drive axles have been more popular due to presumed higher resale

value (Cummins 2016).

Finally, fuel economy is an important characteristic for trucks, as it governs one of the

main variable costs (i.e., fuel costs) for truck owners. Fuel economy is, for the purpose of

this paper and the policy it examines, measured in gallons per thousand ton-mile, as the

fuel usage of a given truck differs considerably depending on whether it is empty or towing

as much as 26,000 or more pounds. Limited information about truck efficiency is available

to prospective buyers; manufacturers produce designated energy efficient models, but do not

publicize the expected fuel usage in a standardized way.

2.2 Policy

Though CAFE standards were first enacted for light-duty vehicles in 1975, the federal gov-

ernment only recently undertook the regulation of heavy-duty vehicle fuel economy. Diesel

fuel and engine emission standards were implemented in the 2000s, and in August 2011, the

Environmental Protection Agency (EPA) and the National Highway Traffic Safety Admin-

istration (NHTSA) issued joint greenhouse gas emissions and fuel economy standards for

medium- and heavy-duty trucks (EPA & NHTSA 2011b). Phase I of the rule covers model

years 2014 through 2018, while Phase II, introduced in 2016, covers model years through

2027. The Heavy-Duty (HD) National Program features separate standards for three cat-

egories: combination tractors (see definition above), heavy-duty pickup trucks and vans,

and vocational vehicles. This paper focuses on the first category, but includes a subset of

heavy-duty vocational vehicles to accurately represent tradeoffs between potential substi-

tutes. Heavy-duty pickups and vans are omitted.

The EPA standards for combination tractors are delineated across cab type and three
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roof heights for a total of nine categories (class 7 vehicles are only offered as day cabs) and,

as is discussed below, compliance with the standards allows averaging across several weight

categories (see table 2 for the 2014 and 2017 combination tractor standards). By contrast,

heavy-duty pickup trucks and vans (classes 2b and 3) are regulated in a similar manner

to light-duty vehicles, subject to adjustments based on vehicle capacity and 4-wheel drive.

Finally, vocational vehicles is the catch-all category covering vehicles as varied as cement

mixers, school buses, tow trucks, etc., and this wide range of forms and purposes dictates

the manner of regulation. Vocational vehicles, which fall into classes 2b-8, are divided

into subcategories based on engine size, and though the standards consist of emissions/fuel

economy targets, adherence is primarily based on tire choices.

Though fuel economy standards are intended to drive research and development in effi-

ciency measures, the standards target levels of efficiency that are achievable with existing

technology. The standards rely upon a subset of technologies included in a 2010 National

Research Council (NRC) report on approaches to reduce medium- and heavy-duty truck

fuel consumption (EPA & NHTSA 2011a). Some of the largest efficiency improvements are

available via improvements to engines, aerodynamics, rolling resistance, and drivetrain (NRC

2010).

Compliance with the standards is determined using a simulation model, the “Greenhouse

gas Emissions Model” (GEM). The model pre-defines a number of inputs including tractor

frontal area, tire radius, etc. (EPA 2011b). When examining combination tractors, users

are able to input the coefficient of aerodynamic drag, steer and drive tire rolling resistance,

whether the vehicle has a speed limiter, weight reductions from lighter components, and the

use of extended idle reduction technology. Vocational vehicle standards only consider engine

fuel intensity and improvement in tire rolling resistance.

2.3 Data

Analyzing the effect of heavy-duty truck fuel efficiency policy requires data on the quantity

and characteristics of trucks sold, buyer attributes, and fuel efficiency technologies and their

costs. I combine data from a number of sources. First, class 7 and 8 vehicle sales data

for 2010-2018 come from IHS Markit (formerly R.L. Polk).3 The sales are disaggregated by

brand, model name or number, GVWR class (7 or 8), cab length, axle configuration, engine

size, engine manufacturer and model (where available), and buyer information. The buyers

are delineated into 13 broad categories including for-hire, local/state/federal government,

private, individual, utilities, multiple lease categories, and dealer or manufacturer. Buyer

3The IHS Markit data includes all class 7 and 8 trucks. I omit vehicles that are neither tractors nor
straight trucks, which are primarily buses, fire trucks, step vans, and motor homes.
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types are further broken down by industry where possible (e.g., general freight, special-

ized/heavy hauling, forestry/lumber products, etc.). There are 32 categories in this latter

field, though for this paper I often combine vocations.

To the sales data, I join a panel of vehicle models and their characteristics from Price

Digests. The characteristics from Price Digests include brand, model name or number, gross

vehicle weight, axle configuration, BBC (a measure of the distance from bumper to back of

cab), an indicator variable reflecting whether a vehicle is a tractor, a sleeper type field that

includes roof height where available, wheelbase (the distance between front and rear wheels),

and manufacturer suggested retail price (MSRP). The attribute data was merged with the

sales data based on brand, model name, GVWR category, axle configuration, and the tractor

flag. Where no matches were available, I first checked for alternate names (sometimes model

numbers were used in one source while model names were used in the other; in other instances,

one source combined models under a broader model name while the other distinguished

between e.g., “model name 500” and “model name 600”) and then relaxed the attributes

on which the merge was performed. A feature of the heavy-duty vehicle sector (that also

applies to cars and light trucks to a lesser extent) is that multiple configurations may be

categorized as falling under the same brand-model within a year. Where multiple models in

the Price Digest data mapped to a category in the sales data, I calculated the average price

and gross vehicle weight to use in the demand estimation. Of the more than 1.8 million class

7 and 8 vehicle sales in the data, almost 98% can be mapped to price and other attribute

data. Price Digests also includes information on retail price, which I use to adjust MSRP.

Table 1 contains the summary statistics for vehicles available in model years 2011-2019.

There are more class 8 vehicles than class 7, and the largest number of unique vocational

vehicle offerings (though this table counts all sleeper roof heights as a single product offering).

At the level of disaggregation I consider, there are several hundred product offerings per year,

and both within and across time, there is considerable variation in price and other attributes.

It is also worth noting that the total market size for the included class 7 and 8 trucks is

considerably smaller than the market for cars and light trucks. Market size is responsive to a

number of economic conditions, and the minimum annual sales are for the 2011 model year,

when the Great Recession was ongoing. The maximum sales occurred for model year 2016.

Importantly, neither the IHS Markit data nor the Price Digests data include empiri-

cal measures of fuel efficiency. While fuel efficiency data for cars and light trucks is made

available by the EPA4, no such source exists for heavy-duty vehicles.5 The lack of reliable,

4www.fueleconomy.gov
5EPA and NHTSA of course collect the GEM outputs to determine firm compliance with the

standards. An anonymized version of the data was made available following a FOIA request, but
without further information, it is not possible to map observations to models. The full data
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agency-vetted data on performance has been noted by other stakeholders, who have advo-

cated for more public data including a labeling program comparable to that which exists for

light-duty vehicles.6 As a result, I use empirical data on fuel efficiency performance from a

website used by truck drivers to track their fuel usage.7 Drivers are able to register their

trucks on the website and for each fuel up, record the gallons of fuel used and the distance

travelled. Their trucks are identified by year, make, and model, and drivers are able to record

additional details, including average speed, average GVW, modifications they have made to

the vehicle, etc. See appendix figure A.2.2 for what the data looks like at the aggregate

and individual-truck level. I combined this data to calculate average miles per gallon for

each truck model-year, and using known GVWR and assumptions about how full the trucks

typically operate, rescaled this into a fuel intensity measure in gallons per thousand ton-mile.

While it is possible that this measure of fuel efficiency may be biased due to the selection

of drivers who participate in the fuel tracking website, I am able to confirm that models de-

signed to be relatively more fuel efficient were determined to have lower fuel intensities than

other models. Figure 1 shows the sales-weighted average fuel intensity among sleeper cabs

over time. There is an observable decline in fuel intensity in the first year of the standards

(2014).

Several additional data sources merit discussion. The costs of different fuel efficiency

technologies were derived from EPA’s Regulatory Impact Analysis. Patterns in annual ve-

hicle miles traveled (VMT) and payload are based on the Vehicle Inventory Use Survey

(VIUS) with adjustments that bring the data in line with the Regulatory Impact Analysis.

Historically, the VIUS was conducted by the Census Bureau in concert with the Bureau

of Transportation Statistics and the Federal Highway Administration at five-year intervals,

and it collected vehicle-level fuel usage, mileage, and average payload in addition to owner

demographics and other data. The survey was discontinued after 2002, which is why fuel

efficiency measures from the survey are not available for my analysis, but many papers ex-

amining truck-buying behavior (Wollmann 2018) or fuel price responsiveness among truck

owners (Adenbaum et al. 2019), relied on this dataset. The Census has begun a new itera-

tion of the survey, and results will be available in late 2023. In addition to industry-specific

with make-model-configuration information was not made available following the FOIA request be-
cause it is classified as “Confidential Business Information,” though there is an ongoing legal pro-
cess to challenge this designation. The proposed 2027 standards also include efforts to increase
data availability going forward (https://www.epa.gov/regulations-emissions-vehicles-and-engines/
proposed-rule-and-related-materials-control-air-1#rule-history).

6As ACEEE noted in their public comments on the Phase II standards, “The absence of a label or any
other publicly available information stating the fuel efficiency of the vehicle at the time of sale means the
consumer is in effect cut out of the market for efficiency.”

7www.letstruck.com
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usage patterns, I use the VIUS self-reported fuel efficiency measures for historical vehicles in

some descriptive analysis. State-level manufacturing wages by year, used to construct an in-

strument for price, come from the Bureau of Labor Statistics, while Canadian province-level

manufacturing wages were ascertained via Statistics Canada.8 Wages were then matched

to the assembly plants at which each model is assembled, which in turn was derived from

model VINs. The US Census County Business Patterns data provided the numbers of firms

and employees in each industry. The variation in this data is the basis for the distribution

of truck buyer industry types each year.

2.4 Market Structure

The structure of the truck market–in which a small number of manufacturers produce most

of the models purchased by commercial buyers–informs the modeling decisions made in the

following section.

2.4.1 Manufacturers

The heavy-duty truck market is more concentrated than the light-duty vehicle market. There

are 19 brands, or makes, of class 7 and 8 vehicles in the sales data, and 14 of these produce

models available as conventional tractors (i.e., are affected by the tractor-specific policy).

10 of the brands can be found in the Price Digests data (the remaining four sell less than

1% of vehicles in the sales data). Several of these brands are owned by the same parent

company: while Autocar, Caterpillar, Ford, and International brands are all separately

owned, Daimler’s brands include Freightliner and Western Star; PACCAR owns Kenworth

and Peterbilt; and Volvo produces both the brand of the same name and Mack. These

ownership structures are accounted for in the supply model. Figure 2 shows the market

share of each brand over time. Through the entire period, Freightliner’s market share is at

or above 30%.9 The only other brand that comes close is International, which gradually

loses market share for much of the time period.

In addition to market concentration, the supply side of heavy-duty trucks differs from

that of light-duty vehicles in a few key ways. For example, not all components are produced

by the manufacturer. Rather, axles, transmissions, and engines are often produced by outside

8Virtually all trucks in the data are manufactured in the US, Mexico, or Canada due to an import tariff
of 25% applied to all trucks, known as the “Chicken Tax” (Canada and Mexico are exempt due to NAFTA
and its replacement, the USMCA).

9Freightliner is, as noted above, one of two brands owned by Daimler, but Freightliner’s sales are consid-
erably larger than the other Daimler brand, Western Star. Interestingly, the vast majority of Freightliner’s
sales come from the Cascadia model, which is available in a range of configurations. Between 2010 and 2019,
the Freightliner Cascadia’s sales were between 13 and 28% of all class 7 and 8 sales included in the data.
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companies. When a customer purchases a new vehicle from a particular brand, the buyer

is given a choice of many attributes, and the brand serves as the central contact point to

acquire and assemble parts within the main vehicle body. Because of this role, the efficiency

standards are enforced at the manufacturer level, though separate engine standards also

apply.

2.4.2 Buyers

The majority of trucks are purchased for commercial purposes. In the data, approximately

4% of class 7 and 8 trucks are purchased by local, state, and federal government, while

the remainder go to individuals and firms. Among vehicles sold to firms for which data is

available, the freight industry purchases nearly half of vehicles (48%), while service industry

buyers purchase 13%, the wholesale and retail sector buys 7.2%, and construction firms

purchase another 7.1% of vehicles.10 However, there is also meaningful variation in industry

shares over time.

Buyer industry is important because it determines the distance traveled and weight car-

ried, which in turn shapes preferences for cab characteristics and fuel efficiency. The rela-

tionship between buyer industry and vehicle attributes is evident in table 3, which shows

that sanitation and construction are much more likely to purchase vocational vehicles than

general or specialized freight or other industries, and that while all industry groups are more

likely to purchase class 8 vehicles than class 7, sanitation and general freight in particular

purchase a large share of class 8 vehicles.

Beyond industry, firm size is an important attribute that affects the appropriate choice of

demand model. The size of truck-purchasing firms varies tremendously. At the time of the

most recent VIUS, 70% of respondents operated 1-6 tractors, but more than 8% operated

more than 50 tractors. The decisions made by large fleet operators may be different from

those made by smaller purchasers, but following Wollmann (2018), this paper abstracts from

these issues. Future research may consider how decisions made by the managers of smaller

or larger fleets differ.

A number of surveys study the decision-making and behavior of truck owners. Large

fleets sell or replace tractors more frequently than small fleets do–generally, after three to

five years (Schoettle et al. 2016). While both types of fleet operators seem to require payback

periods for efficiency-improving technologies considerably shorter than the expected lifespan

of a given tractor, Klemick et al. (2015) and Schoettle et al. (2016) found that larger fleets had

10This excludes leased vehicles, for which only the nature of the lease (rental, finance, manufacturer
sponsored) is available. Unfortunately, the industry of the lessee is unavailable in the data. This might be
an issue for my estimation if particular industries are disproportionately likely to lease vehicles rather than
purchase outright.
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longer payback periods. Fuel economy was rated a major consideration in tractor purchase

decisions but was a relatively lower priority for operators of short-haul or regional fleets.

3 Model

To analyze the effects of the fuel economy policy, I estimate a model of consumer and

manufacturer decision-making. The demand model features heterogeneous buyers choosing

vehicles to maximize utility based on vehicle attributes and their own industry-specific pref-

erences for truck characteristics. On the supply side, manufacturers choose vehicle prices and

technology to improve fuel efficiency. Pre-policy, they face an unconstrained profit maximiza-

tion problem, but once the policy is in place, they must make their choices while complying

with average fuel economy standards for each vehicle subgroup. This is one advantage of

studying fuel economy standards in the heavy truck setting compared to light-duty vehi-

cles: because the policy was adopted more recently, we are able to observe the results from

the unconstrained problem and estimate marginal costs without assumptions about relative

dealer and manufacturer markups that are common in the CAFE literature.

3.1 Demand

Each buyer i considers the set of trucks J and the outside good and makes a purchase

decision in order to maximize utility.11 For each truck j in J , the buyer derives utility from

the attributes of the truck, though the utility may vary according to buyer characteristics,

and derives disutility from the price. The expression for buyer i’s indirect utility from inside

good j is

Uij = xj(βx + βoxz
o
i ) + pjβp + ξj + εij (1)

and from outside good is ui0 = εi0. xj is a vector of vehicle j’s characteristics, including

gross vehicle weight rating, indicators for each cab type (sleeper vs. day vs. vocational)

and roof height, indicators for common axle configurations, estimated fuel intensity, and

make dummies. Price pj enters separately. Buyers have heterogeneous preferences for some

characteristics that differ at the industry or individual level: the preferences are determined

by individual characteristics zoi . The two shocks are ξj, representing unobserved attributes of

truck j, and εi,j, representing idiosyncratic preferences for product j. From this specification,

11The outside good in this setting includes the decision not to purchase a truck, to purchase a used truck,
or to purchase a vehicle outside the categories considered in this paper (i.e., medium-duty trucks or certain
vocational vehicles).
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the purchase probabilities can be derived. That is, the probability that buyer i chooses

product j is given by

Pr(j|x) =
exp(xj(βx + βoxz

o
i ) + pjβp + ξj)

1 +
∑

j′∈J exp(xj′(βx + βoxz
o
i ) + pj′βp + ξj′)

(2)

The aggregate demand sj can be found by integrating this probability over the distribution

of demographics.

This demand specification assumes that each buyer only buys one vehicle at a time,

is a price taker, and makes a static decision without regard to other vehicles he or she

may own (i.e., buyers do not purchase trucks as a “bundle” or consider complementarity or

substitutability across their fleet). In practice, there are some large freight companies that

purchase many trucks for their fleet at the same time, but the majority of buyers are small

firms that may own multiple vehicles but purchase a limited number of new vehicles each

year.

3.2 Supply

In this section, I outline a supply model in which firms respond to a fuel economy standard

imposed at the class-sleeper-roof height (henceforth, regulatory-group) level. This is the

model used to simulate welfare outcomes below. The initial estimation uses pre-policy data

to estimate a standard, unconstrained supply model.

In this model, firms have chosen the set of vehicles and their non-fuel intensity charac-

teristics well in advance, i.e., the product set is exogenous. In order to comply with the

policy, firms have two levers: vehicle price and additional technology that improves their

fuel efficiency by a given percentage.

Each firm f , offering a set of vehicles Jf , maximizes profits subject to the constraint

imposed at the regulatory-group level:

max
p,t

∑
j∈Jf

πf (p, t) (3)

subject to ∑
j∈Jr

f
qjej∑

j∈Jr
f
qj
≤ ēr ∀ r (4)

where Jrf is the set of firm f ’s vehicles that are in regulatory group r, ej is the fuel intensity

of vehicle j, and ēr is the fuel intensity standard for regulatory group r. Technology adoption
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t is modeled as a percentage reduction in fuel consumption, where 0 ≤ t ≤ 1. I ignore the

possibility of permit-trading across firms and do not consider dynamics.12

We can write the firm’s Lagrangian as follows:

L =
∑
j∈Jf

(pj − cj(tj))sj(p, t)N +
∑
r

1{j ∈ Jrf}λrfsj(p, t)NLj,r (5)

where cj is the marginal cost of producing vehicle j, sj is vehicle j’s share of the total market,

N is the market size, λrf is the shadow cost of the regulation per unit of sales specific to

firm f and regulatory group r, and Lj is a measure of how far vehicle j is from complying

with the standard: Lj,r = (1 − tj)ej − ēr. If the standard is not binding, λrf will be 0. For

firm-groups for which the standard is binding, at the optimum, λrf should be equal for all

vehicles in Jrf , but because averaging is not allowed across groups, we would not expect λfs

to be equal for vehicles in different regulatory groups.

The solution to firms’ profit maximization problem in the presence of the regulation is

pinned down by two first-order conditions and the assumption that firms comply with the

standards exactly. The 2J first-order conditions with respect to price and technology are:

∂L
∂p

= s + Φ ◦∆p(p− c− λ ◦ L) (6)

∂L
∂t

= (−ct′ + λ ◦ e) ◦ s + Φ ◦∆t(p− c− λ ◦ L) (7)

Bold letters refer to J × 1 vectors of characteristics, Φ is a J × J ownership matrix where

Φj,k = 1 if product j and product k are produced by the same firm, and λ is a J × 1 vector

where the jth element contains the shadow price for product j’s firm-regulatory group. ∆p is

a matrix of the derivatives of market shares with respect to price where ∆j,k = ∂sk
∂pj

, and ∆t

is the similarly defined matrix of the derivatives of market shares with respect to technology.

ct
′ is a vector of the derivative of marginal costs with respect to technology. ◦ denotes

the Hadamard product. For tractability, in the counterfactual simulation, I impose that t

decisions are made at the firm-regulatory group level, which reduces the number of first-order

conditions with respect to technology to the number of firm-regulatory group combinations.

12These assumptions are standard in the CAFE literature.
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4 Estimation

4.1 Demand Estimation

The set of parameters I estimate are βx (the common tastes for characteristics), βox (the

individual- and industry-specific tastes for characteristics), and βp (the sensitivity to vehicle

prices). Demand estimation follows the Berry et al. (1995) approach. That is, the procedure

starts with a guess of the linear β1 = (βx, βp) parameters. From this, δ(β1), the implied

mean utility, can be derived using the standard contraction mapping approach. In turn, the

non-linear parameters, βox, are estimated via GMM. The GMM problem is:

min
β2

g(β2)
′ZWZ ′g(β2) (8)

where g(β2) is a vector of moments, and in all specifications, it includes the unobserved

characteristics, ξj. Because product characteristics are chosen before the realization of the

consumer demand shocks, E[ξ|x,w] = 0, where x is product characteristics and w is manu-

facturing wages. W is a weighting matrix and Z is a matrix of instruments.

Instruments are required to address the endogeneity of price and fuel intensity. The

excluded instruments for price must shift the price of product j without directly affecting

utility from purchasing product j. These include the typical BLP instruments–own-firm and

other firms’ products, which affect price via competitive effects–and wages corresponding to

the region in which each tractor is produced, which affect price via marginal cost. While

there may, over the long term, be strategic decisions about where to open factories and

which vehicles to produce in different locations, these decisions are made well before the

product-specific preference shocks are revealed.

Finding excluded instruments for fuel intensity poses a challenge. In other settings, people

have used measures of the endogenous characteristics in other markets or the endogenous

characteristics on other vehicles that share the same platform (Reynaert 2021, Klier & Linn

2012). Unfortunately, here we lack data on truck efficiency in other markets and there is no

clear analogue to platforms. One source of variation is the policy itself: there is a meaningful

drop in fuel intensity following the first stage of the policy and a smaller reduction following

the second stage. I use indicators for being in the post-standard period interacted with cab

type (sleeper vs. day) as instruments for fuel intensity. In this case, identification of the

fuel intensity preferences comes from differences in fuel intensity among otherwise similar

vehicles across time, rather than the cross sectional variation.

With the IHS buyer industry data, I also include micro-moments in g() as in Wollmann

(2018) or Petrin (2002) in order to estimate individual- and industry-specific heterogeneity
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in preferences. Specifically, I match the probability the buyer of a vocational vehicle belongs

to a specific industry (sanitation, construction, general freight, specialized/heavy hauling,

and other). Identification of industry-specific preferences comes from differences in voca-

tional share across industries and the variation in this share across years as other attributes

of vocational and non-vocational vehicles change. Additionally, the demand specification

allows individual truck usage patterns to affect utility from vehicle fuel efficiency. Individual

new vehicle thousand ton-miles (ktmi, referring to the product of miles and payload in the

vehicle’s first year of use) interact with vehicle costs per thousand ton miles (the product of

fuel intensity per thousand ton miles and fuel costs, in the year prior to the vehicle’s model

year13). Measures of individual ktmi come from the VIUS survey (scaled up to match more

recent mileage, as done elsewhere). Values of observed ktmi for a subset of observations

are chosen based on the industry of the truck owner; that is, simulated freight buyers will

have a randomly selected (scaled) ktm from the historical data. This reflects the observed

differences in vehicle usage across buyer industries (Appendix figure (A.2.3) shows the dis-

tribution of miles and payloads by industry for new vehicles in the VIUS survey). While

I cannot include moments that directly capture the relationship between ton-miles and ve-

hicle fuel intensity (as the VIUS fuel intensities are several decades old), identification for

the parameter on ktmi×cost per milej comes in part from additional moments that match

expected fuel intensity by industry. Because the cost per mile term also includes the diesel

cost, estimation of this parameter also depends on variation across time in fuel prices, and

how market shares for relatively more efficient vehicles differ in years with higher or lower

diesel prices. Identification of other preferences for exogenous vehicle characteristics comes

from the variation in vehicle market shares as the bundle of other attributes vary both within

each market and across time.

4.2 Supply Estimation

I obtain marginal costs of vehicles produced in the year before the policy comes into effect

from the firm’s pre-policy first-order condition with respect to price, equation 6. s and p

come directly from the data, ∆p is derived from the demand results, and λ = 0 when the

policy is not in place.

In the post-policy period, I need estimates of the cost of technology adoption. For this,

I rely on estimates from EPA’s regulatory impact analysis, fit to a quadratic function for

each regulatory group. However, given the low costs of compliance (less than $9000 in 2018

$ to improve high-roof sleeper cabs by 15-16%), consumers may be willing to pay for these

13A significant share of trucks are purchased in the calendar year before a vehicle’s model year.
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improvements even with incomplete valuation of future fuel savings.

If we observe that these fuel economy-improving technologies are not fully adopted, an

explanation for why profit maximizing manufacturers would not have done so is needed.

There are several potential explanations, with different implications for the costs and benefits

of the policy. First, EPA’s marginal cost estimates may be overly optimistic. To address this

concern, I use the first-order condition with respect to technology, equation 7, to calculate

the pre-policy slope of the marginal costs of improving fuel efficiency (this approach is based

on Reynaert (2021)). I can then use the pre-policy value as the intercept of the post-policy

cost functions in the counterfactuals. Second, there may be fixed costs of adopting the

technology that are not observed, such that adopting the technology is only worthwhile once

the costs of non-compliance are added to firms’ profit maximization.

5 Results

Table 4 contains the estimates of the demand parameters. The discrete cab categories are

class 7 day cabs, class 8 day cabs, low-roof sleeper cabs, mid-roof sleeper cabs, and high-

roof sleeper cabs; the omitted category is vocational vehicles. The results are shown for a

random coefficients model in which utility is affected by vehicle characteristics as well as

buyer expected first-year fuel costs (the interaction between cost per ton-mile and individual

ton miles) and industry-wide tastes for vocational vehicles. As expected, consumers dislike

higher prices and prefer vehicles with higher GVW, all else equal. The average price elastic-

ity of demand for vehicles is between -2.5 and -2.8, slightly lower than elasticities estimated

for passenger vehicles. Consumers also prefer most non-vocational (tractor) vehicles to vo-

cational alternatives, with sleepers generally preferred to day cabs. Only class 7 day cabs

have a negative coefficient. The industry-specific preferences for vocational vehicles are also

consistent with expectations–construction and sanitation, two industries that tend to use

special-purpose vehicles, have positive coefficients, as does specialized/heavy hauling, which

relies in part on severe duty vehicles that can be classified as vocational. Only freight prefers

tractors to vocational vehicles.

5.1 Fuel Cost Undervaluation

The coefficients on first-year fuel costs merit further discussion. The coefficients are sepa-

rately estimated for vocational and non-vocational vehicles. Both terms are negative, sug-

gesting that buyers dislike additional fuel costs, though the coefficient on fuel costs for

non-vocational vehicles is larger. I calculate the willingness to pay for fuel savings in trucks,
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providing some of the only estimates of this parameter and the first that do not rely primarily

on decades-old VIUS results. Buyer i’s lifetime fuel expenditures from vehicle j depend on

both i’s truck usage (in terms of miles and payload) and vehicle j’s efficiency: specifically,

the net present value of lifetime fuel expenditures are equal to

T∑
t=0

γt × ktm0
i × dpktmj

(1 + δ)t

where T is the maximum vehicle lifetime, assumed to be 30 years (following the EPA cal-

culations)14; γt represents the ratio of ton-miles in year t relative to the first year of vehicle

ownership, and is calculated using VIUS data15; ktm0
i is buyer i’s ton-mileage in the first year

of ownership (measured in thousands of ton miles); dpktmj is vehicle j’s cost per thousand

ton-mile; and δ is the discount rate, assumed to be 5%. Under these assumptions, $1000

of first-year fuel savings is worth $5,785 over the vehicle’s lifetime. The willingness to pay

for these fuel savings is only $1220, as determined by the ratio of the price and fuel cost

coefficients. Thus, I calculate that consumers only value 21.1% of future fuel savings.

This high degree of undervaluation is potentially surprising, but not unprecedented. In a

study of fuel efficiency valuation among class 8 truck owners, Adenbaum et al. (2019) found

truck owners were willing to pay for 29.5% of expected future fuel savings using a higher

discount rate. Truck buyers have also stated in a number of surveys that they require a 3-4

year payback period for fuel efficiency improvements (Schoettle et al. 2016), despite the long

lifetime of heavy-duty trucks. When the estimated willingness to pay is compared to fuel

expenditures in the first 3 years, there is still considerable undervaluation (49%).

5.2 Potential Undervaluation Mechanisms

There are several possible explanations for why truck buyers, who use their vehicles for busi-

ness purposes and should be optimizing for cost, may not be doing so. The first explanation

is a split incentive problem. Specifically, some of the trucks in my data are purchased by

private companies to transport their own products; these firms must fully bear the costs of

fuel expenditures. However, many trucks transport goods for other companies. The owner

of the truck contracts with the firm that produces goods, and these contracts usually involve

a fuel surcharge, covering some or all of the fuel expenses. Thus, it is the set of goods-

producing firms who must bear the cost of less efficient vehicles, but they cannot make the

14Because of the decline in fuel usage over the vehicle lifetime, as well as the discounting of future fuel
costs, results are not very sensitive to cutting off the vehicle lifetime as early as 10 years.

15Specifically, I estimate a linear relationship between age and log miles. The decline is large enough that
in the 10th year, the miles traveled are less than 30% of miles traveled when the vehicle is new.
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initial vehicle purchase decision themselves and may not always have information about the

fuel efficiency of the exact truck being used to ship their goods. A second explanation is in-

complete information. As discussed in the data section, information on vehicle fuel efficiency

is not available systematically. Buyers can peruse message boards or assess the historical

performance of other vehicles they own, but may not be able to definitively determine the

savings associated with each vehicle model available. Finally, it might be the case that

fuel efficiency improvements are bundled with other, less desirable attributes that are not

observable in the available data.

I am able to test whether the first two explanations might be relevant using the VIUS

data. If split incentives are at play, we would predict that trucks owned by private companies

would be more fuel efficient (conditional on vehicle attributes and other usage variables) than

those owned by companies who ship on behalf of other firms and can pass on some or all

costs. I compare the reported fuel efficiency for respondents who report that a majority

of their mileage is driven privately (“carry own goods, or use truck for internal company

business only”) to those who report that a majority of the mileage is driven by owner

operators (“independent truckers hired to carry other people’s goods”) or by motor carriers

(“company-owned trucks hired to carry other people’s goods”) and who are categorized

as either freight or other in industry (i.e., omitting the primarily vocational truck-buying

industries). The results, shown in table 5, reveal that private shippers in fact do have

significantly higher reported fuel efficiencies. This evidence supports the contention that the

ability to pass on fuel costs affects the valuation of fuel economy improvements.

Similarly, I test whether information about fuel efficiency is limited, such that firms must

learn about it from their own fleet. If this is the case, firms with more trucks would be

expected to have better information about fuel efficiency and therefore have higher efficiency

(again, conditional on attributes and usage). I compare the reported fuel efficiency for truck

owners with less than or equal to 10 trucks in their fleet to those with larger fleets, and find

that those with smaller fleets report lower efficiencies, but the difference is not statistically

significant. Thus, this may be weak evidence for the role of incomplete information. However,

there are other reasons we might expect fleet size to be related to fuel efficiency (including

the ability to optimize shipping routes more effectively with more trucks to choose from, or

the endogeneity of fleet size, which is itself an outcome of business profitability). There is not

an obvious way to test for the possibility that efficiency is correlated with undesirable truck

attributes with currently available data in the VIUS or in the other vehicle attribute data,

though this may be a question for future work. Ultimately, there are plausible explanations

for a high degree of undervaluation of future fuel savings, which in turn provides motivation

for government intervention in fuel efficiency policy.
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5.3 Marginal Cost Estimates

Using the demand parameters and observed prices and quantities, I derive marginal costs

for each vehicle in each pre-policy year based on the unconstrained first-order condition,

equation 6. Appendix figure A.2.4 contains the sales-weighted average marginal costs by

vehicle category, before and after the policy. Vocational vehicles have the lowest marginal

costs (at an average of $51,000), and high-roof sleepers have the highest marginal costs (at

an average of $89,000). Because I rely on engineering estimates for the cost of fuel intensity

improvements needed to comply with the policy, structural supply parameters are not needed

for counterfactual simulations. However, for completeness, they are shown in table 6 for the

different demand specifications, with and without make fixed effects in the cost function.

The costs of increasing gross vehicle weight and reducing fuel intensity (i.e., making vehicles

more efficient) are both positive, as well.

5.4 Robustness

The central undervaluation results are robust to alternative demand specifications and as-

sumptions that affect the translation of willingness to pay for first-year fuel costs into will-

ingness to pay for lifetime fuel costs. Appendix table A.1.2 shows a set of logit demand

models and implied fuel cost valuations. The first two columns use gallons per thousand ton

mile as the fuel efficiency characteristic and separate willingness to pay for fuel efficiency for

sleepers and day cabs (as a rough proxy for the different miles driven by these vehicles). The

first of these columns does not instrument for fuel efficiency, while all subsequent columns

do. The third and fourth columns use different measures of efficiency–cost per thousand

ton miles and expected first-year fuel costs (where miles driven comes from average vehicle

characteristics). Across these specifications, only one estimate suggests that there may be

closer to full valuation (column 2) and in that case, only for day cabs. In addition, appendix

table A.1.3 shows the willingess to pay for future fuel savings using the central demand

model but alternative assumptions to calculate lifetime fuel expenditures. Even with much

shorter vehicle lifespans and much higher interest rates, the undervaluation is economically

significant.

6 Counterfactuals

I use the estimated demand and supply results to simulate outcomes under the fuel efficiency

policy and under a Pigouvian tax on diesel.
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6.1 Simulation Setup

When the policy is in place, firms choose prices and technologies to maximize profits while

complying with the policy, as in equation 3. I simplify the problem somewhat by only

allowing firms to choose technology improvements at the regulatory group level–thus, rather

than J first-order conditions with respect to technology, there is one technology first-order

equation per firm-regulatory group.

Firms start with the set of vehicles they had in the year prior to the policy, 2013. I

estimate the marginal costs of the vehicles in the baseline from equation 6. I solve for the

equilibrium so that each firm complies with the policy exactly. While it is possible that firms

may have chosen to not comply and instead pay fines, the regulation was extremely vague

about the magnitude of fines, and firms may have chosen compliance rather than risk both

the bad publicity and the uncertain costs of non-compliance.

The solution approach is to find the set of technology choices, t and shadow costs, λ, such

that equations 6 and 7 hold. That is, for a given guess of λ and t, I determine the updated

marginal cost for each vehicle (baseline marginal cost + the additional cost of improving

fuel efficiency by t percent) and the λL cost of adjusting prices. I use these to solve for

equilibrium prices and shares in equation 6. With these, I define my objective function to be

the set of constraints and first-order conditions with respect to technology, and use a root

finding approach16 to solve for the t and λ such that these equations hold exactly. In the case

of firm-regulatory groups that are already in compliance prior to the policy implementation,

and might choose a negative t or λ, I constrain their technology choice and shadow costs to

0.

I compare equilibrium outcomes with and without the policy, including firm profits,

consumer welfare, and changes in environmental damages. To estimate the change in CO2

emissions, I first calculate how ton-miles decline over vehicle lifetime using VIUS data. Then,

I calculate the annual fuel usage over the vehicle lifetime for each buyer-vehicle pairing based

on first-year ton-miles and the annual adjustment factors. With these results, I calculate

total diesel consumption and CO2 generation per gallon. Vehicles have a maximum lifetime

of 30 years, but vehicle miles traveled in year 30 fall to less than 5% of their total miles

traveled when new. I use the 2014 Social Cost of Carbon from the Obama Administration’s

estimates, which is around $42 in 2018 dollars, and assume a 5% annual discount rate for

both environmental damages and fuel savings (IWG 2016).

A second set of counterfactuals considers the effect on the vehicle fleet of a direct diesel tax

at the social cost of carbon, which generates an approximately 43 cent per gallon surcharge

16MINPACK’s hybrid routine
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on diesel. In the baseline specification, truck buyers do not directly adjust their mileage (a

rebound effect), but they make new purchases with an expectation that future fuel costs

will change. To reflect that the value of the outside good, which may include holding onto

existing trucks for longer or purchasing used vehicles, will also be affected by the diesel tax,

I shift all inside good utility based on an assumed outside good efficiency. This allows the

focus of the counterfactual to be on how buyers reallocate purchases within the vehicle fleet

rather than on the extensive margin decision of whether to purchase a new truck at all.

A second counterfactual allows truck buyers to respond to the tax by also adjusting their

ton-miles driven based on elasticities from the literature (Leard et al. 2016).

6.2 Welfare Results

In order to comply with the policy, optimizing manufacturers will choose price changes and

technological improvements so that the marginal loss in profits from each are equal. The

largest price changes occur for sleepers, which see a greater than $5000 (or 3%) increase, on

average, while the smallest price changes occur for vocational vehicles, whose prices increase

by only a few hundred dollars (see table 8). In aggregate, truck buyers pay 2.5% more

following the imposition of the policy. Because of the relatively low elasticities of demand,

this does not meaningfully reduce the total number of trucks sold. From the standpoint of

environmental policy, this is potentially good news, as some of the buyers who choose the

outside good may do so by keeping old vehicles on the road longer. There is some degree

of shifting across classes: approximately 3% fewer sleepers are purchased, and 1% fewer day

cabs are purchased, and the majority of these are replaced by vocational vehicles which see

smaller price increases but tend to be less efficient. This class shifting reduces consumer

welfare, as buyers are choosing vehicles with features they do not prefer; it also reduces the

magnitude of environmental benefits.

Table 7 contains the welfare results (in millions of 2018 $) from introducing the fuel

efficiency policy in the first year, including changes in consumer surplus, changes in man-

ufacturer profits, changes in environmental benefits (from reduced CO2 production), and

because buyers do not fully consider the future fuel savings when they make their initial

purchase, it includes the additional fuel savings that they accrue. Notably, the magnitude of

the environmental benefits is smaller than the direct costs to consumers and manufacturers.

However, the magnitude of undervalued future fuel savings dwarfs the costs: if even 25%

of the total future fuel savings are incorporated into the welfare calculation, the policy’s

benefits exceed the costs.

Because of the different tastes for truck characteristics and the different usage patterns,
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we can also examine how the costs and benefits for buyers vary across industry and usage.

Appendix table A.1.4 shows the industry-specific change in consumer surplus induced by the

policy. The magnitude of the welfare effects are determined by two factors: the propensity

to purchase vocational vehicles, which are assumed to have a lower cost of fuel-intensity

improvement, and the usage intensity of the truck. Buyers who were predisposed toward

vocational vehicles face limited changes in the vehicles they are most likely to buy, explaining

the small costs to sanitation and the slightly larger costs to construction. A second factor,

however, is that all buyers face the same prices for purchasing the same truck, even if they

are using the truck in very different ways. Thus, while the policy raises the price of every

vehicle, the purchasers of a given vehicle who drive the most will recoup the largest share of

costs. This explains the benefits to the specialized/heavy hauling industry, who have both

a taste for vocational vehicles and drive long distances and/or carry heavy payloads, such

that the savings from the policy are quite large. The tradeoff between the two factors is

highlighted in appendix figure A.2.5.

The second set of counterfactuals address this unequal distribution of internalized costs.

A first-best policy, in which truck owners are taxed according to the damage associated with

their driving patterns, would target the costs more precisely than a policy that raises the cost

of most vehicles. However, the tax increases future fuel costs, which earlier results suggest

are not fully accounted for in purchase decisions, so the capacity of the tax to reduce fuel

usage via truck purchases is limited. Figure 3 shows the relative magnitudes of the first-

year fuel savings associated with the policy, the tax when it only affects vehicle purchases

and not total driving behavior, and the tax when it can affect vehicle purchases and total

driving behavior. The effect of the tax on fuel usage via purchase changes (and technology

improvements, shown in appendix figure A.2.6) is limited–only 3 million gallons of diesel

compared to more than 60 million gallons saved due to the policy in the first year. However,

the Leard et al. (2016) ton-mileage elasticities in response to fuel costs reveal that truck

owners are much more able to respond to fuel costs via other channels, and the magnitude

of the fuel savings is more than twice that of fuel savings under the policy. Ultimately,

there are multiple market failures at play in the truck market: the environmental externality

from combusting diesel, as well as the several interrelated market failures, including split

incentives and incomplete information, that prevent truck buyers from fully internalizing

future (private) fuel costs when they purchase new trucks. Optimal policy would use distinct

policy instruments to tackle each market failure.
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7 Conclusion

This paper estimates the degree of undervaluation of future fuel savings among heavy-duty

truck buyers and the corresponding effects of the 2014 heavy-duty vehicle fuel economy

standards using a structural model of demand and supply of trucks. I find that buyers

meaningfully undervalue future fuel savings, which may reflect the industrial organization of

the major truck buying firms as well as incomplete information. When manufacturers are

required to improve average vehicle fuel economy, the internalized costs to truck buyers are

large relative to the costs to manufacturers and the environmental benefits. However, the un-

internalized fuel savings benefits more than offset the costs, as drivers of heavy-duty tractors

only internalize less than one quarter of future fuel savings. This undervaluation of future

fuel savings supports not only the imposition of fuel efficiency standards, but potentially also

the collection and public provision of more information about expected fuel usage for heavy-

duty trucks. Such information is available in the light-duty vehicle segment and potentially

to owners of large fleets who can observe their own historical performance, but other buyers

may struggle to make optimal choices with incomplete information.

These results have some caveats. First, the estimates rely on the best data available

on truck fuel efficiency, but it remains imperfect data. The estimates also rely on EPA’s

engineering estimates of technology costs. Future work with improved data may directly

estimate the cost of adopting different fuel economy technologies and measure preferences for

different characteristics that vary along with fuel economy (e.g., more aerodynamic designs

vs. low rolling resistance tires). In doing so, it may be possible to disentangle other potential

reasons that technologies EPA believes are cost effective were not adopted prior to the policy.

Second, the joint decision of vehicle and how it will be used is more important in the truck

context than in the light-duty vehicle setting because of the high variance in truck miles

driven and weight of cargo; this paper treated truck usage as exogenous, but it may be useful

to more rigorously consider how changes in fuel costs per ton mile affect truck deployment

decisions.

Other caveats may best be addressed in other papers. I did not account for dynamics or

the used vehicle market in this analysis. Buyers may have made strategic timing decisions

about when to purchase new vehicles or hold onto existing vehicles; such an effect has proven

important in the light-duty vehicle context and merits further investigation. Finally, both

truck manufacturers and owners have other modes of response to changes in fuel economy

standards and corresponding vehicle fuel costs. In the former case, other attributes may be

adjusted, and the supply model could be revised to account for the endogeneity of other

product features. In the latter cases, truck owners can make changes in individual or fleet-
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wide driving behavior, vehicle weight, routes, or the adoption of technology like trailer

skirts. Understanding how fuel efficiency standards interact with these other behaviors is an

important question for future research.
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Tables

Table 1: Summary statistics.

Min. Max. Mean

Panel A. Count of product offerings by type
Class 7 46 61 55.11
Class 8 104 124 115.78
Vocational vehicles 77 96 88.67
Conventional tractors with sleeper cab 17 25 22.00
Conventional tractors with day cab 50 66 60.22

Panel B. Prices and quantities
Prices ($1000s) 48.85 213.63 120.91
Quantity 122068 301455 218900.56

Notes: Data include sales of model years 2011-2019. Counts contain the number of unique
make-model-sleeper-class combinations that are available in each category (e.g., a make-
model available as both a class 7 day cab and a class 8 day cab will count as two distinct
products), but a make-model-sleeper-class available in multiple configurations that fall
under the same category (e.g., a sleeper with multiple roof heights or two class 7 vocational
vehicles with different axle configurations) will only count as a single offering.

Table 2: EPA and NHTSA standards for combination tractors.

EPA Emissions Standards
(g CO2/ton-mile)

NHTSA Fuel Consumption Standards
(gal/1000 ton-mile)

Low Roof Mid Roof High Roof Low Roof Mid Roof High Roof
Panel A. 2014 Standards
Day Cab Class 7 107 119 124 10.5 11.7 12.2
Day Cab Class 8 81 88 92 8.0 8.7 9.0
Sleeper Cab Class 8 68 76 75 6.7 7.4 7.3
Panel B. 2017 Standards
Day Cab Class 7 104 115 120 10.2 11.3 11.8
Day Cab Class 8 80 86 89 7.8 8.4 8.7
Sleeper Cab Class 8 66 73 72 6.5 7.2 7.1

Notes: CO2 and fuel standards are set separately by EPA and NHTSA but designed to be compatible with one another.
The first set of standards applied to model years 2014-2016, and a higher set of standards applied to model years 2017 and
2018. Standards data are from Table 2-34 in the Regulatory Impact Analysis.
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Table 3: Industry Vehicle Attributes.

Total Sales Shr Vocational Shr Sleeper Shr Day Shr Class 7 Shr Class 8 Average GVW

Sanitation 47258 0.93 0.03 0.04 0.08 0.92 5143.37
General Freight 602911 0.08 0.54 0.38 0.12 0.88 5004.91

Construction 85527 0.79 0.10 0.11 0.18 0.82 4717.86
Specialized/Heavy Hauling 16497 0.50 0.11 0.39 0.22 0.78 4520.66

Other 1267693 0.36 0.37 0.27 0.21 0.79 4691.57

Notes: This table contains sales by industry for the full dataset (including some model year 2019 vehicles sold in 2018). The share columns indicate
the share of vehicles sold to buyers in each industry that are predicted to fall into one of three cab categories: vocational vehicles, sleepers, or day cabs
and one of two weight class categories. The final column contains the average gross vehicle weight of vehicles purchased by each industry buyer type.
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Table 4: Demand parameter estimates.

prices (1000s) −0.022∗∗∗

(0.008)
GVW (10000 lbs) 1.705

(1.076)
day 7 −0.934∗∗∗

(0.226)
day 8 0.050

(0.271)
low-roof sleeper 0.050

(0.211)
mid-roof sleeper 0.741∗∗∗

(0.230)
high-roof sleeper 0.541∗∗∗

(0.197)
4 × 2 axles 0.668∗∗∗

(0.113)
6 × 6 axles 2.245∗∗∗

(0.112)
8 × x axles −0.453∗∗∗

(0.160)
Dollars per thousand ton mile (dpktm) × thousand ton miles (ktmi) (thousands) −0.010∗∗∗

(0.0003)
dpktm × non voc × ktmi −0.017∗∗

(0.007)
vocational × constructioni 1.850∗∗∗

(0.078)
vocational × general freighti −1.841∗∗∗

(0.238)
vocational × sanitationi 2.971∗∗∗

(0.131)
vocational × specialized/heavy haulingi 1.011∗∗∗

(0.252)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: The main demand model, with individual mileage that determines fuel costs, and industry-specific
preferences for vocational trucks. Brand fixed effects are included. Class 7 Day, Class 8 Day, Low-Roof Sleeper,
and High-Roof Sleeper are all indicator variables indicating that a truck falls into one of these regulatory groups
(the omitted category is vocational vehicles). The three axle categories are also indicators for a vehicle having a
4 × 2 axle configuration, a 6 × 4 axle configuration, or one of the configurations with 8 wheels (8 × 4, 8 × 6, or
8 × 8). The omitted category is all 6-wheel configurations. Dollars per thousand ton miles is the product of fuel
intensity (measured in gallons per thousand ton miles) and diesel price. Thousand ton miles (ktm) vary at the
individual level, and represent the usage for the first year of vehicle ownership.
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Table 5: Descriptive VIUS regressions.

MPG

(1) (2)

Private Shipping 0.116∗∗∗ 0.143∗∗∗

(0.032) (0.033)

≤10 trucks -0.041
(0.029)

Age controls 5 5

Weight/payload controls 5 5

Miles controls 5 5

Observations 14,880 13,382

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: This table contains descriptive regressions of
self-reported fuel efficiency (measured in miles per gal-
lon) vs. truck and truck owner characteristics using data
from the 2002 VIUS survey. The first column tests for
the role of split incentives by comparing fuel efficiency
for private shippers to fuel efficiency of shippers who
transport goods on behalf of other firms. The second
column tests whether truck buyers learn about fuel effi-
ciency from other vehicles in their fleet. Both regressions
control vehicle age, vehicle weight and weight including
payload, miles traveled, and vehicle class. Tractors be-
longing to individuals/companies in the freight industry
or who are categorized as “other” (i.e., not construction
or sanitation) are included in the observations.
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Table 6: Supply parameter estimates.

log(mc)
(1) (2)

GVW (10000 lbs) 3.042*** 2.679***
(0.224) (0.233)

4 × 2 axles -0.062 -0.154***
(0.044) (0.046)

6 × 4 axles 0.093*** 0.013
(0.037) (0.039)

8 × x axles 0.091* 0.036
(0.048) (0.048)

Class 7 Day -0.031 -0.113
(0.084) (0.082)

Class 8 Day -0.609*** -0.621***
(0.054) (0.058)

Canadian production -0.394*** -0.24***
(0.067) (0.075)

Fuel Intensity -0.042*** -0.047***
(0.004) (0.004)

log(wages) 0.066*** -0.126***
(0.018) (0.028)

High-Roof Sleeper -0.241*** -0.281***
(0.052) (0.058)

Low-Roof Sleeper -0.382*** -0.437***
(0.059) (0.068)

Mid-Roof Sleeper -0.302*** -0.482***
(0.059) (0.066)

Brand FEs 5

Notes: The supply parameters associated with the
main demand specification, with and without brand
fixed effects. Class 7 Day, Class 8 Day, Low-Roof
Sleeper, and High-Roof Sleeper are all indicator vari-
ables indicating that a truck falls into one of these reg-
ulatory groups (the omitted category is vocational ve-
hicles). The three axle categories are also indicators for
a vehicle having a 4 × 2 axle configuration, a 6 × 4
axle configuration, or one of the configurations with 8
wheels (8 × 4, 8 × 6, or 8 × 8). The omitted category
is all 6-wheel configurations. Fuel intensity is measured
in gallons per thousand ton-mile. log(wages) are the log
of manufacturing wages in the region in which a vehicle
is produced, and Canadian production is an indicator
variable for vehicles produced in Canada.
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Table 7: Welfare costs (millions).

∆ Consumer Surplus -356.89
∆ Manufacturer Profits -37.67
Environmental Benefits 148.63
(Undervalued) Fuel Savings 1,008.70

Total (excl. fuel savings) -245.93
Total (incl. fuel savings) 762.77

Notes: Components of overall welfare changes
under the policy. The consumer surplus is cal-
culated based on compensating variation. The
CO2 benefits are based on fuel usage reduction
over the lifetime of the truck, at a 5% discount
rate. The “(undervalued) fuel savings” presents
the value of fuel savings over the lifetime of the
vehicle less the fuel savings that were already
incorporated into buyers’ utility. The “total
(excl. fuel savings)” is the sum of changes in
consumer surplus, producer surplus, and envi-
ronmental damages excluding benefits from un-
dervalued fuel savings. The “total (incl. fuel
savings)” adds the additional value of fuel sav-
ings that were not valued by buyers upfront. All
values in millions of 2018 $.

Table 8: Changes in prices, quantities

∆ Price Unweighted ∆ Price ∆ Sales
Vocational $119 $49 3188

Sleeper $5304 $6862 -2691
Day $3103 $6876 -774

Combined $2420 $3484 -277

Notes: Change in prices and quantities of vehicles sold by cate-
gory. “∆ Price” is the change in price weighted by vehicle sales,
while “Unweighted ∆ Price” is the average change in price across
vehicle offerings, not weighted by sales. “∆ Sales” is the change in
total number of vehicles sold. The changes are grouped by vehi-
cle type (vocational vehicles, day cabs, and sleeper cabs, and also
aggregated in the “combined” category).
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Figures

Figure 1: Aggregate Fuel Intensity of Sleeper Cabs
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Notes: Sales-weighted average fuel intensity of all sleeper cabs in the data. The dashed line indicates the
year before the standards were put in place.
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Figure 2: Market Share by Brand
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Notes: Market share is calculated as the share of vehicles sold among included brands (or makes, used
here interchangeably). Line color corresponds to the different brand, and brands owned by the same parent
company share the same linetype (e.g., Freightliner and Western Star, both owned by Daimler).

Figure 3: Counterfactual First-Year Fuel Savings
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Notes: First-year fuel savings by scenario relative to baseline. Policy refers to the 2014 levels of the main
fuel efficiency standards. Both tax scenarios involve the imposition of a 43 cents/gallon diesel tax. In the
scenario identified as “Tax,” buyers’ expected vehicle usage is fixed, i.e., the tax can only affect the technology
improvements adopted by the manufacturers and the buyers’ decision of which truck to buy. In the “Tax +
Ton-Mile Response,” buyers also adjust their usage of the truck, based on elasticity estimates from Leard
et al. (2016).
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Appendices

A Appendix Tables

Table A.1.1: DOT vehicle weight classes

Class Description/examples
Empty
weight
range

Gross
weight
range

Typical fuel intensities

Tons Tons

Gallons
per

thousand
miles

Gallons
per

thousand
ton-miles

1c Passenger cars 1.2-2.5 <3 30-40 67

1t
Small light-duty trucks
(including SUVs and
minivans)

1.6-2.2 <3 40-50 58

2a Standard pickups, large SUVs 2.2-3 3-4.25 50 39
2b Large pickups, utility vans 2.5-3.2 4.25-5 67-100 39
3 Utility vans, minibuses 3.8-4.4 5-7 77-125 33
4 Delivery vans 3.8-4.4 7-8 83-140 24

5
Large delivery vans, bucket
trucks

9.2-10.4 8-9.75 83-166 26

6
School buses, large delivery
vans

5.8-7.2 9.75-13 83-200 20

7
City bus, refrigerated truck,
fire engine

5.8-7.2 13-16.5 125-250 18

8a
Dump/refuse trucks, city buses,
fire engines

10-17 16.5-40 160-400 9

8b
Large tractor trailers, bulk
tankers

11.6-17 16.5-40 133-250 7

Source: Harrington & Krupnick (2012)
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Table A.1.2: Robustness: Alternative Logit Specifications

gpktm dpktm 1st-year costs

(1) (2) (3) (4)

prices (1000s) −0.032∗∗∗ −0.039∗∗∗ −0.034∗∗∗ −0.034∗∗∗

(0.005) (0.006) (0.005) (0.005)
GVW (10000 lbs) 0.575 3.611∗∗∗ 1.971∗∗∗ 0.757

(0.629) (1.061) (0.704) (0.763)
day 7 2.126∗∗∗ 15.656∗∗∗ 6.135∗∗∗ 2.744∗∗∗

(0.451) (2.741) (1.380) (0.473)
day 8 0.312 11.395∗∗∗ 3.704∗∗∗ 1.909∗∗∗

(0.372) (2.187) (1.093) (0.681)
low-roof sleeper 2.853∗∗∗ 9.143∗∗∗ 2.728∗∗ 2.533∗∗∗

(0.778) (2.536) (1.147) (0.808)
mid-roof sleeper 3.990∗∗∗ 10.580∗∗∗ 3.688∗∗∗ 3.552∗∗∗

(0.848) (2.767) (1.246) (0.885)
high-roof sleeper 3.746∗∗∗ 10.247∗∗∗ 3.380∗∗∗ 3.271∗∗∗

(0.848) (2.758) (1.238) (0.886)
4 × 2 axles 0.273∗∗ 0.658∗∗∗ 0.423∗∗∗ 0.329∗∗∗

(0.108) (0.156) (0.119) (0.114)
6 × 4 axles 2.495∗∗∗ 2.612∗∗∗ 2.461∗∗∗ 2.270∗∗∗

(0.106) (0.130) (0.113) (0.149)
8 × x axles 0.097 0.354∗ 0.129 0.086

(0.146) (0.188) (0.158) (0.157)
gpktm −0.030∗∗∗ 0.251∗∗∗

(0.011) (0.066)
gpktm × sleeper −0.450∗∗∗ −0.832∗∗

(0.103) (0.342)
gpktm × day −0.083∗∗ −0.997∗∗∗

(0.034) (0.199)
dpktm 27.031∗∗∗

(8.581)
dpktm × sleeper −77.275

(49.218)
dpktm × day −113.527∗∗∗

(34.956)
1st-year fuel cost 0.027∗∗

(0.014)
1st-year fuel cost × tractor −0.052∗∗∗

(0.018)

Instrument for FE 5 5 5

Implied Fuel Valuation Day 0.16 0.91 0.36
Implied Fuel Valuation Sleeper 0.28 0.29 0.08
Implied Fuel Valuation Tractor 0.12

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: Alternative logit demand estimates using different measures of fuel intensity/fuel costs. The first
two columns use gallons per thousand ton mile (gptkm), the third column uses dollars per thousand ton
mile (dpktm, gpktm × fuel costs), and the final column uses estimated first-year fuel costs. All but the
first column include instruments for the measure of fuel intensity/costs.

38



Table A.1.3: Robustness: Alternative Assumptions

Estimated WTP

Shorter vehicle lifespan
5 years 0.35
10 years 0.25

Alternative interest rates
10% 0.26
20% 0.34

Notes: Estimates of WTP for future fuel savings from main spec-
ifications using alternative assumptions to translate first-year fuel
costs into lifetime fuel costs. The first two rows consider much
shorter vehicle lifespans (compared to a default of 30 years) and
the second two rows consider alternative interest rates (compared
to a default of 5%).

Table A.1.4: Industry Change in Consumer Surplus

Other Construction General Freight Sanitation Specialized/Heavy Hauling

∆CS -1.818 -0.569 -1.141 -0.064 0.272

Notes: Average per-consumer change in consumer surplus by industry. Prices in 1000s of 2018 $.

B Appendix Figures

Figure A.2.1: Vehicle weight classes, illustrated
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Figure A.2.2: Screenshots from letstruck.com fuel tracking website.

(a) The main page, organized by vehicle.

(b) Individual truck data.

Notes: For each vehicle on the main page, the year-make-model, number of recorded fuel ups, and average
miles per gallon is displayed. More information is available about each individual truck, including more
recent fuel usage, miles tracked, modifications made to the vehicle, etc.
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Figure A.2.3: Distribution of miles and payload by industry from the Vehicle Inventory Use
Survey (VIUS).

(a) Annual miles (1000s) reported by vehicles with ages of zero or one in
the survey.
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(b) Average payload (tons) reported by vehicles with ages of zero or one in
the survey.
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Figure A.2.4: Estimated sales-weighted average marginal costs by vehicle category, before vs.
after the policy.
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Figure A.2.5: Change in consumer surplus by industry and ton-miles driven.
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Figure A.2.6: Percent improvement in vehicle fuel efficiency in response to counterfactuals.
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Notes: This figure shows the average technology improvement (percentage) compared to the baseline in
response to either the fuel economy policy or the tax (before considering mileage changes). The left fig-
ure shows the unweighted average for all product offerings, while the right figure shows the sales-weighted
average and reflects the combined effects of profit-maximizing decisions made by manufacturers and the
utility-maximizing vehicle purchases by consumers. The counterfactual tax scenario does not allow voca-
tional vehicles to change their fuel efficiency via technology, but in the presence of the tax, some aggregate
improvements are observed in the sales-weighted average as buyers shift their purchase behaviors.
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